Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nanomedicine (Lond) ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275157

RESUMO

Aim: Despite some successful examples of therapeutic nanoparticles reaching clinical stages, there is still a significant need for novel formulations in order to improve the selectivity and efficacy of cancer treatment. Methods: The authors developed two novel dendrimer-gold (Au) complex-based nanoparticles using two different synthesis routes: complexation method (formulation A) and precipitation method (formulation B). Using a biomimetic cancer-on-a-chip model, the authors evaluated the possible cytotoxicity and internalization by colorectal cancer cells of dendrimer-Au complex-based nanoparticles. Results: The results showed promising capabilities of these nanoparticles for selectively targeting cancer cells and delivering drugs, particularly for the formulation A nanoparticles. Conclusion: This work highlights the potential of dendrimer-Au complex-based nanoparticles as a new strategy to improve the targeting of anticancer drugs.

2.
Biofabrication ; 15(4)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37699408

RESUMO

Microfluidic organs and organoids-on-a-chip models of human gastrointestinal systems have been established to recreate adequate microenvironments to study physiology and pathophysiology. In the effort to find more emulating systems and less costly models for drugs screening or fundamental studies, gastrointestinal system organoids-on-a-chip have arisen as promising pre-clinicalin vitromodel. This progress has been built on the latest developments of several technologies such as bioprinting, microfluidics, and organoid research. In this review, we will focus on healthy and disease models of: human microbiome-on-a-chip and its rising correlation with gastro pathophysiology; stomach-on-a-chip; liver-on-a-chip; pancreas-on-a-chip; inflammation models, small intestine, colon and colorectal cancer organoids-on-a-chip and multi-organoids-on-a-chip. The current developments related to the design, ability to hold one or more 'organs' and its challenges, microfluidic features, cell sources and whether they are used to test drugs are overviewed herein. Importantly, their contribution in terms of drug development and eminent clinical translation in precision medicine field, Food and Drug Administration approved models, and the impact of organoid-on-chip technology in terms of pharmaceutical research and development costs are also discussed by the authors.


Assuntos
Trato Gastrointestinal , Sistemas Microfisiológicos , Estados Unidos , Humanos , Estômago , Fígado , Organoides
3.
Trends Biotechnol ; 41(12): 1488-1500, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37544843

RESUMO

The fields of tissue bioengineering, -omics, and spatial biology are advancing rapidly, each offering the opportunity for a paradigm shift in breast cancer research. However, to date, collaboration between these fields has not reached its full potential. In this review, we describe the most recently generated 3D breast cancer models regarding the biomaterials and technological platforms employed. Additionally, their biological evaluation is reported, highlighting their advantages and limitations. Specifically, we focus on the most up-to-date -omics and spatial biology techniques, which can generate a deeper understanding of the biological relevance of bioengineered 3D breast cancer in vitro models, thus paving the way towards truly clinically relevant microphysiological systems, improved drug development success rates, and personalised medicine approaches.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Engenharia Biomédica , Bioengenharia , Materiais Biocompatíveis
4.
Pharmaceutics ; 15(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376110

RESUMO

Hydrogels based on natural polysaccharides can have unique properties and be tailored for several applications, which may be mainly limited by the fragile structure and weak mechanical properties of this type of system. We successfully prepared cryogels made of newly synthesized kefiran exopolysaccharide-chondroitin sulfate (CS) conjugate via carbodiimide-mediated coupling to overcome these drawbacks. The freeze-thawing procedure of cryogel preparation followed by lyophilization is a promising route to fabricate polymer-based scaffolds with countless and valuable biomedical applications. The novel graft macromolecular compound (kefiran-CS conjugate) was characterized through 1H-NMR and FTIR spectroscopy-which confirmed the structure of the conjugate, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)-which mirrored good thermal stability (degradation temperature of about 215 °C) and, finally, gel permeation chromatography-size exclusion chromatography (GPC-SEC)-which proved an increased molecular weight due to chemical coupling of kefiran with CS. At the same time, the corresponding cryogels physically crosslinked after the freeze-thawing procedure were investigated by scanning electron microscopy (SEM), Micro-CT, and dynamic rheology. The results revealed a prevalent contribution of elastic/storage component to the viscoelastic behavior of cryogels in swollen state, a micromorphology with micrometer-sized open pores fully interconnected, and high porosity (ca. 90%) observed for freeze-dried cryogels. Furthermore, the metabolic activity and proliferation of human adipose stem cells (hASCs), when cultured onto the developed kefiran-CS cryogel, was maintained at a satisfactory level over 72 h. Based on the results obtained, it can be inferred that the newly freeze-dried kefiran-CS cryogels possess a host of unique properties that render them highly suitable for use in tissue engineering, regenerative medicine, drug delivery, and other biomedical applications where robust mechanical properties and biocompatibility are crucial.

5.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110008

RESUMO

Intervertebral disc (IVD) herniation often causes severe pain and is frequently associated with the degeneration of the IVD. As the IVD degenerates, more fissures with increasing size appear within the outer region of the IVD, the annulus fibrosus (AF), favoring the initiation and progression of IVD herniation. For this reason, we propose an AF repair approach based on methacrylated gellan gum (GG-MA) and silk fibroin. Therefore, coccygeal bovine IVDs were injured using a biopsy puncher (⌀ 2 mm) and then repaired with 2% GG-MA as a filler material and sealed with an embroidered silk yarn fabric. Then, the IVDs were cultured for 14 days either without any load, static loading, or complex dynamic loading. After 14 days of culture, no significant differences were found between the damaged and repaired IVDs, except for a significant decrease in the IVDs' relative height under dynamic loading. Based on our findings combined with the current literature that focuses on ex vivo AF repair approaches, we conclude that it is likely that the repair approach did not fail but rather insufficient harm was done to the IVD.

6.
Biofabrication ; 15(3)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36888998

RESUMO

Basic pre-clinical research based on 2D cultures have been very valuable in colorectal cancer (CRC) research but still have failed to improve patient prognostic outcomes. This is because they simply do not replicate what happensin vivo, i.e.2D cultured cells system cannot replicate the diffusion constraints usually found in the body. Importantly, they also do not mimic the dimensionality of the human body and of a CRC tumour (3D). Moreover, 2D cultures lack the cellular heterogeneity and the tumour microenvironment (TME) such as stromal components, blood vessels, fibroblasts, and cells of the immune system. Cells behave differently whether in 2D and 3D, in particular their different genetic and protein expression panels are very different and therefore we cannot fully rely on drug tests done in 2D. A growing field of research based on microphysiological systems involving organoids/spheroids or patient-derived tumour cells has become a solid base for a better understanding of the TME and as a result is a step towards personalized medicine. Furthermore, microfluidic approaches have also started to open possibilities of research, with tumour-on-chips and body-on-chips being used in order to decipher complex inter-organ signalling and the prevalence of metastasis, as well as CRC early-diagnosis through liquid biopsies. Herein, we focus on the state-of-the-art of CRC research with emphasis on 3D microfluidicin vitrocultures-organoids, spheroids-drug resistance, circulating tumour cells and microbiome-on-a-chip technology.


Assuntos
Neoplasias Colorretais , Sistemas Microfisiológicos , Humanos , Esferoides Celulares , Organoides , Fibroblastos , Microambiente Tumoral
7.
Adv Biol (Weinh) ; 7(4): e2200141, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658719

RESUMO

Breast cancer is still the leading cause of women's death due to relapse and metastasis. In vitro tumor models are considered reliable tools for drug screening and understanding cancer-driving mechanisms due to the possibility of mimicking tumor heterogeneity. Herein, a 3D breast cancer model (3D-BCM) is developed based on enzymatically-crosslinked silk fibroin (eSF) hydrogels. Human MCF7 breast cancer cells are encapsulated into eSF hydrogels, with and without human mammary fibroblasts. The spontaneously occurring conformational change from random coil to ß-sheet is correlated with increased eSF hydrogels' stiffness over time. Moreover, mechanical properties analysis confirms that the cells can modify the stiffness of the hydrogels, mimicking the microenvironment stiffening occurring in vivo. Fibroblasts support cancer cells growth and assembly in the eSF hydrogels up to 14 days of culture. Co-cultured 3D-BCM exhibits an upregulated expression of genes related to extracellular matrix remodeling and fibroblast activation. The 3D-BCM is subjected to doxorubicin and paclitaxel treatments, showing differential drug response. Overall, these results suggest that the co-culture of breast cancer cells and fibroblasts in eSF hydrogels allow the development of a mimetic in vitro platform to study cancer progression. This opens up new research avenues to investigate novel molecular targets for anti-cancer therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Técnicas de Cocultura , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia , Antineoplásicos/farmacologia , Hidrogéis , Fibroblastos/patologia , Microambiente Tumoral
8.
Pharmaceutics ; 14(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559320

RESUMO

Current advances in biomaterials processing and engineering for drug delivery have allowed interesting progressed in biomedical field [...].

9.
Pharmaceutics ; 14(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36365226

RESUMO

(1) Background: Peripheral nerve injuries represent a major clinical challenge. If nerve ends retract, there is no spontaneous regeneration and grafts are required to proximate the nerve ends and give continuity to the nerve. (2) Methods: GDNF-loaded NPs were characterized physicochemically. For that, NPs stability at different pH's was assessed, and GDNF release was studied through ELISA. In vitro studies are performed with Schwann cells, and the NPs are labeled with fluorescein-5(6)-isothiocyanate for uptake experiments with SH-SY5Y neural cells. (3) Results: GDNF-loaded NPs are stable in physiological conditions, releasing GDNF in a two-step profile, which is beneficial for nerve repair. Cell viability is improved after 1 day of culture, and the uptake is near 99.97% after 3 days of incubation. (4) Conclusions: The present work shows the efficiency of using CMCht/PAMAM NPs as a GDNF-release system to act on peripheral nerve regeneration.

10.
Pharmacol Ther ; 239: 108276, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055421

RESUMO

Digestive system cancers account for nearly half of all cancers around the world and have a high mortality rate. Cell culture and animal models represent cornerstones of digestive cancer research. However, their ability to enable cancer precision medicine is limited. Cell culture models cannot retain the genetic and phenotypic heterogeneity of tumors and lack tumor microenvironment (TME). Patient-derived xenograft mouse models are not suitable for immune-oncology research. While humanized mouse models are time- and cost-consuming. Suitable preclinical models, which can facilitate the understanding of mechanisms of tumor progression and develop new therapeutic strategies, are in high demand. This review article summarizes the recent progress on the establishment of TME by using tumor organoid models and microfluidic systems. The main challenges regarding the translation of organoid models from bench to bedside are discussed. The integration of organoids and a microfluidic platform is the emerging trend in drug screening and precision medicine. A future prospective on this field is also provided.


Assuntos
Neoplasias do Sistema Digestório , Neoplasias Gastrointestinais , Humanos , Animais , Camundongos , Medicina de Precisão , Organoides/patologia , Microambiente Tumoral , Neoplasias Gastrointestinais/patologia , Neoplasias do Sistema Digestório/patologia
11.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015340

RESUMO

Kefiran is an exopolysaccharide produced by the microflora of kefir grains used to produce the fermented milk beverage kefir. The health-promoting and physicochemical properties of kefiran led to its exploration for a range of applications, mainly in the food industry and biomedical fields. Aiming to explore its potential for tissue engineering and regenerative medicine (TERM) applications, the kefiran biopolymer obtained through three different extraction methodologies was fully characterized and compared. High-quality kefiran polysaccharides were recovered with suitable yield through different extraction protocols. The methods consisted of heating the kefir grains prior to recovering kefiran by centrifugation and differed mainly in the precipitation steps included before lyophilization. Then, kefiran scaffolds were successfully produced from each extract by cryogelation and freeze-drying. In all extracts, it was possible to identify the molecular structure of the kefiran polysaccharide through 1H-NMR and FTIR spectra. The kefiran from extraction 1 showed the highest molecular weight (~3000 kDa) and the best rheological properties, showing a pseudoplastic behavior; its scaffold presented the highest value of porosity (93.2% ± 2), and wall thickness (85.8 µm ± 16.3). All extracts showed thermal stability, good injectability and desirable viscoelastic properties; the developed scaffolds demonstrated mechanical stability, elastic behavior, and pore size comprised between 98-94 µm. Additionally, all kefiran products proved to be non-cytotoxic over L929 cells. The interesting structural, physicochemical, and biological properties showed by the kefiran extracts and cryogels revealed their biomedical potential and suitability for TERM applications.

12.
Nutrients ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889794

RESUMO

Osteoporosis is defined by loss of bone mass and deteriorated bone microarchitecture. The present study compared the effects of available pharmacological and non-pharmacological agents for osteoporosis [alendronate (ALE) and concomitant supplementation of vitamin D (VD) and calcium (Ca)] with the effects of bovine colostrum (BC) supplementation in ovariectomized (OVX) and orchidectomized (ORX) rats. Seven-month-old rats were randomly allocated to: (1) placebo-control, (2) ALE group (7.5 µg/kg of body weight/day/5 times per week), (3) VD/Ca group (VD: 35 µg/kg of body weight/day/5 times per week; Ca: 13 mg/kg of body weight/day/3 times per week), and (4) BC supplementation (OVX: 1.5 g/day/5 times per week; ORX: 2 g/day/5 times per week). Following four months of supplementation, bone microarchitecture, strength and bone markers were evaluated. ALE group demonstrated significantly higher Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC and significantly lower Ct.Pr, Tb.Pr, Tb.Sp, Ct.BMD and Tb.BMD, compared to placebo (p < 0.05). BC presented significantly higher Ct.Pr, Ct.BMD, Tb.Pr, Tb.Sp, and Tb.BMD and significantly lower Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC compared to ALE in OVX rats (p < 0.05). OVX rats receiving BC experienced a significant increase in serum ALP and OC levels post-supplementation (p < 0.05). BC supplementation may induce positive effects on bone metabolism by stimulating bone formation, but appear not to be as effective as ALE.


Assuntos
Densidade Óssea , Osteoporose , Alendronato/farmacologia , Animais , Peso Corporal , Bovinos , Colostro/metabolismo , Suplementos Nutricionais , Feminino , Humanos , Osteoporose/tratamento farmacológico , Ovariectomia , Gravidez , Ratos , Ratos Sprague-Dawley
13.
Biomater Adv ; 134: 112575, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525742

RESUMO

The application of nanoparticles in magnetic resonance imaging (MRI) has been greatly increasing, due to their advantageous properties such as nanoscale dimension and tuneability. In this context, manganese (Mn2+)-based nanoparticles have been greatly investigated, due to their valuable use as a contrast agent, improving signal intensity and specificity in MRI (manganese-enhanced MRI, MEMRI). Additionally, Mn2+ can act as scavengers of reactive oxygen species (ROS), commonly present in the inflammatory processes of neurodegenerative diseases. The aim of the present study was to develop nanoreactors, which can be used as contrast-agent in MEMRI. Several blends of methacrylated gellan gum (GG-MA) and hyaluronic acid (HA) were embedded with different types of manganese dioxide (MnO2) nanoparticles and further physico-chemically characterized. Dynamic light scattering, scanning electron microscopy, water uptake and degradation studies were performed. In vitro cytotoxicity of the different formulations was also evaluated using an immortalized rat fibroblast cell line L929, up to 72 h of culturing. Synthesized nanoparticles were obtained with an average size of 70 nm and round-shaped morphology. The stability of the different formulations of hydrogels was not affected by nanoparticles' concentration or HA ratio. The presence of synthesized MnO2 (MnO2_S) nanoparticles reduced hydrogels' cytocompatibility, whereas the commercially available type 1 (MnO2_C1) nanoparticles were less toxic to cells. Additionally, cell proliferation and viability were enhanced when a lower content of HA was present. Higher concentrations (75 and 100 ng/mL) of MnO2_S and MnO2_C1 nanoparticles did not negatively affected cell viability, whereas the opposite effect was observed for the commercial type 2 (MnO2_C2) nanoparticles. Further studies are required to evaluate the potential application of the most promising nanoreactors' formulations for combined application in MEMRI and as ROS scavengers.


Assuntos
Hidrogéis , Compostos de Manganês , Animais , Meios de Contraste , Ácido Hialurônico/química , Hidrogéis/farmacologia , Imageamento por Ressonância Magnética , Manganês/farmacologia , Compostos de Manganês/farmacologia , Nanotecnologia , Óxidos/farmacologia , Ratos , Espécies Reativas de Oxigênio
14.
Biomater Adv ; 133: 112611, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527137

RESUMO

The simultaneous generation of multiple tissues and their functional assembly into complex tissues remains a critical challenge for regenerative medicine. The tissue-to-tissue interface connecting two adjacent tissues is vital in effective tissue function. The presented worked hypothesize that differential functional property can be engineered by modulating the macromolecular composition of a 3D hydrogel construct and distinctively endow stem cell fate. Hence, it was possible to successfully generate macromolecular constructs by using the extracellular matrix (ECM)-based materials; type I collagen (Col I) and hyaluronic acid (HA); and natural-derived biomaterials as methacrylated gellan-gum (GGMA). The 3D hydrogel constructs consisted of two dissimilar layers: 1) Col I: HA hydrogel and 2) GGMA hydrogel. The tissue-to-tissue interface was created by seeding human mesenchymal stem cells (MSCs) between the two layers. Differential functional rheological and mechanical properties characterized the acellular 3D gradient hydrogel constructs. The cell-based 3D hydrogel constructs were assessed for MSCs viability by live/dead staining. Assessing apoptosis by flow cytometry, data showed the feasibility of the 3D hydrogel constructs in maintaining cell viability with no apoptosis induction onto MSCs. A homogeneous distribution was achieved in a successful cellular tissue-to-tissue interface. Human MSCs low proliferative rate and low ECM deposition were seen for all constructs; however, lower proliferative rate within the ECM microenvironment highlights controlled self-renewal of MSCs. The 3D hydrogel constructs maintained the human MSCs phenotype, yet the macromolecular modulation allowed tuning the human MSCs morphology from round to spindle-shaped phenotype. The intrinsic properties of the 3D cell-based hydrogel construct induced differential inflammatory and angiogenic paracrine secretory profiles owing to the dissimilar engineered biophysical milieu. Human MSCs sense the nearby macromolecular environment adjusting the cell-ECM interactions, which influence cell behaviour and fate. Beyond multi-tissue regeneration, the engineered cellular 3D hydrogel constructs may simultaneously address immune regeneration.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Matriz Extracelular , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Células-Tronco , Engenharia Tecidual
15.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454635

RESUMO

In the field of tissue engineering and regenerative medicine (TERM), the use of traditional biomaterials capable of integrating the host tissue to promote the healing and regenerative process while it degrades has become less and less a focus of inspiration [...].

16.
Pharmaceutics ; 14(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456531

RESUMO

Anterior cruciate ligament (ACL) replacement is still a big challenge in orthopedics due to the need to develop bioinspired implants that can mimic the complexity of bone-ligament interface. In this study, we propose biomimetic composite tubular grafts (CTGs) made of horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) hydrogels containing ZnSr-doped ß-tricalcium phosphate (ZnSr-ß-TCP) particles, as promising bone tunnel fillers to be used in ACL grafts (ACLGs) implantation. For comparative purposes, plain HRP-cross-linked SF hydrogels (PTGs) were fabricated. Sonication and freeze-drying methodologies capable of inducing crystalline ß-sheet conformation were carried out to produce both the CTGs and PTGs. A homogeneous microstructure was achieved from microporous to nanoporous scales. The mechanical properties were dependent on the inorganic powder's incorporation, with a superior tensile modulus observed on the CTGs (12.05 ± 1.03 MPa) as compared to the PTGs (5.30 ± 0.93 MPa). The CTGs presented adequate swelling properties to fill the space in the bone structure after bone tunnel enlargement and provide a stable degradation profile under low concentration of protease XIV. The in vitro studies revealed that SaOs-2 cells adhered, proliferated and remained viable when cultured into the CTGs. In addition, the bioactive CTGs supported the osteogenic activity of cells in terms of alkaline phosphatase (ALP) production, activity, and relative gene expression of osteogenic-related markers. Therefore, this study is the first evidence that the developed CTGs hold adequate structural, chemical, and biological properties to be used as bone tunnel fillers capable of connecting to the ACL tissue while stimulating bone tissue regeneration for a faster osteointegration.

17.
Knee Surg Sports Traumatol Arthrosc ; 30(10): 3422-3427, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35338384

RESUMO

PURPOSE: The aim of this study was to evaluate the clinical outcome at 5-year follow-up of a one-step procedure combining anterior cruciate ligament (ACL) reconstruction and partial meniscus replacement using a polyurethane scaffold for the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy. Moreover, the implanted scaffolds have been evaluated by MRI protocol in terms of morphology, volume, and signal intensity. METHODS: Twenty patients with symptomatic knee laxity after failed ACL reconstruction and partial medial meniscectomy underwent ACL revision combined with polyurethane-based meniscal scaffold implant. Clinical assessment at 2- and 5-year follow-ups included VAS, Tegner Activity Score, International Knee Documentation Committee (IKDC), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Lysholm Score. MRI evaluation of the scaffold was performed according to the Genovese scale with quantification of the scaffold's volume at 1- and 5-year follow-ups. RESULTS: All scores revealed clinical improvement as compared with the preoperative values at the 2- and 5-year follow-ups. However, a slight, but significant reduction of scores was observed between 2 and 5 years. Concerning the MRI assessment, a significant reduction of the scaffold's volume was observed between 1 and 5 years. Genovese Morphology classification at 5 years included two complete resorptions (Type 3) and all the remaining patients had irregular morphology (Type 2). With regard to the Genovese Signal at the 5-year follow-up, three were classified as markedly hyperintense (Type 1), 15 as slightly hyperintense (Type 2), and two as isointense (Type 1). CONCLUSION: Simultaneous ACL reconstruction and partial meniscus replacement using a polyurethane scaffold provides favourable clinical outcomes in the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy at 5 years. However, MRI evaluation suggests that integration of the scaffold is not consistent. LEVEL OF EVIDENCE: Level IV.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Menisco , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Seguimentos , Humanos , Escore de Lysholm para Joelho , Meniscectomia , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Menisco/cirurgia , Poliuretanos , Resultado do Tratamento
18.
Cell Mol Life Sci ; 79(3): 135, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179655

RESUMO

Oxaliplatin is the first-line regime for advanced gastric cancer treatment, while its resistance is a major problem that leads to the failure of clinical treatments. Tumor cell heterogeneity has been considered as one of the main causes for drug resistance in cancer. In this study, the mechanism of oxaliplatin resistance was investigated through in vitro human gastric cancer organoids and gastric cancer oxaliplatin-resistant cell lines and in vivo subcutaneous tumorigenicity experiments. The in vitro and in vivo results indicated that CD133+ stem cell-like cells are the main subpopulation and PARP1 is the central gene mediating oxaliplatin resistance in gastric cancer. It was found that PARP1 can effectively repair DNA damage caused by oxaliplatin by means of mediating the opening of base excision repair pathway, leading to the occurrence of drug resistance. The CD133+ stem cells also exhibited upregulated expression of N6-methyladenosine (m6A) mRNA and its writer METTL3 as showed by immunoprecipitation followed by sequencing and transcriptome analysis. METTTL3 enhances the stability of PARP1 by recruiting YTHDF1 to target the 3'-untranslated Region (3'-UTR) of PARP1 mRNA. The CD133+ tumor stem cells can regulate the stability and expression of m6A to PARP1 through METTL3, and thus exerting the PARP1-mediated DNA damage repair ability. Therefore, our study demonstrated that m6A Methyltransferase METTL3 facilitates oxaliplatin resistance in CD133+ gastric cancer stem cells by Promoting PARP1 mRNA stability which increases base excision repair pathway activity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Oxaliplatina/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Estabilidade de RNA , Neoplasias Gástricas/tratamento farmacológico , Antígeno AC133 , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Criança , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prognóstico , RNA Mensageiro , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biofabrication ; 14(2)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172294

RESUMO

Human tissues and organs are inherently heterogeneous, and their functionality is determined by the interplay between different cell types, their secondary architecture, and gradients of signalling molecules and metabolites. To mimic the dynamics of native tissues, perfusion bioreactors and microfluidic devices are widely used in tissue engineering (TE) applications for enhancing cell culture viability in the core of 3D constructs. Still, mostin vitroscreening methods for compound efficacy and toxicity assessment include cell or tissue exposure to constant and homogeneous compound concentrations over a defined testing period. Moreover, a prevalent issue inhibiting the large-scale adoption of microfluidics and bioreactor is the tubing dependence to induce a perfusion regime. Here, we propose a compartmentalized rotational (CR) 3D cell culture platform for a stable control over gradient tissue culture conditions. Using the CR bioreactor, adjacent lanes of constructs are patterned by controlled flow dynamics to enable tissue stratification. Numerical and experimental simulations demonstrate cell seeding dynamics, as well as culture media rotational perfusion and gradient formations. Additionally, the developed system induces vertical and horizontal rotations, which increase medium exchange and homogeneous construct maturation, allowing both perfused tubing-based and tubing-free approaches. As a proof-of-concept, experiments and accompanying simulation of cellular inoculation and growth in 3D scaffold and hydrogel were performed, before the examination of a blood-brain-barrier model, demonstrating the impact of a heterotypic culture on molecular permeability under mimetic dynamic conditions. Briefly, the present work discloses the simulation of 3D dynamic cultures, and a semi-automated platform for heterotypic tissuesin vitromodelling, for broad TE and drug discovery/screening applications.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Engenharia Tecidual , Reatores Biológicos , Simulação por Computador , Humanos , Perfusão , Engenharia Tecidual/métodos
20.
Bone ; 154: 116256, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781047

RESUMO

Bone tissue engineering approaches have evolved towards addressing the challenges of tissue mimetic requirements over the years. Different strategies have been combining scaffolds, cells, and biologically active cues using a wide range of fabrication techniques, envisioning the mimicry of bone tissue. On the one hand, biomimetic scaffold-based strategies have been pursuing different biomaterials to produce scaffolds, combining with diverse and innovative fabrication strategies to mimic bone tissue better, surpassing bone grafts. On the other hand, biomimetic scaffold-free approaches mainly foresee replicating endochondral ossification, replacing hyaline cartilage with new bone. Finally, since bone tissue is highly vascularized, new strategies focused on developing pre-vascularized scaffolds or pre-vascularized cellular aggregates have been a motif of study. The recent biomimetic scaffold-based and scaffold-free approaches in bone tissue engineering, focusing on materials and fabrication methods used, are overviewed herein. The biomimetic vascularized approaches are also discussed, namely the development of pre-vascularized scaffolds and pre-vascularized cellular aggregates.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Materiais Biocompatíveis , Osso e Ossos , Osteogênese , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...